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Abstract 
The molecular dynamics of ethylene radical cation (C2H4+) is investigated after excitation from the ground state (X2B2u) 
to the first excited electronic state (A2B2g) by using the time-dependent discrete variable representation (TDDVR) 
method. The investigation is being carried out with a realistic 3-mode model Hamiltonian of C2H4+ molecule. We 
perform dynamics on the model Hamiltonian consisting most important three vibrational modes to calculate the spectral 
profile of C2H4+ by using TDDVR approach. The TDDVR calculated ultraviolet photoelectron (PE) spectra shows 
reasonably good agreement with a previous theoretical and the experimental results. It is now established that the 
TDDVR approach for those molecular systems where quantum mechanical description is needed in a restricted region, 
is a good compromise between accuracy and speed.  
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Introduction 

The ultrafast relaxation processes after excitation is an important phenomenon in many molecular 
system due to the fact - non - radiative energy transfer. Such effect become prominent and 
interesting with the existence of conical intersection(s) between the states and bring a fast pathway 
for the transfer of population, which are commonly known as non-adiabatic processes[1-4] involved 
in the dynamics. Such non-adiabatic effects demand rigorous quantum mechanical treatment [5] due 
to its pure quantum nature. But pure quantum mechanical methods are restricted by computational 
time with increasing degrees of freedom therefore, our present effort is to establish a quantum-
classical method, namely time-dependent discrete variable representation (TDDVR) method. 

 The formulation of the TDDVR methodology [6-8] has some special characteristics that 
make it unique dynamical method: (a) TDDVR is appealing from the computational point of view, 
and (b) it paves the blending of classical and quantum concepts with a new twist. Since GH basis 
functions are time - dependent and used as the primitive basis to introduce DVR representation, 
TDDVR has the following advantages: (a) An optimized set of asymmetrically dense grid-points are 
generated from the Hermite polynomial associated with the eigenfunction of a harmonic oscillator 
defined around the center of an initial wave packet, GWP [9]. Thus, the required number of grid - 
points to represent each mode is much less than the case with regularly spaced grid - points; (b) The 
classical dynamics of the time - dependent parameters of GWP dictates the movement of these 
unevenly spaced grid - points and thereby, helps to reduce the requirement of the number of grid – 
points for each mode drastically; (c) Both kinetic - and potential - energy operators appear as local. 
In each mode, the couplings among the grid - points are through KE matrices, where the potential 
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energy is diagonal. On the contrary, electronic states are coupled through potential matrix elements 
defined again at the grid - points. Though the evaluation of KE matrices is needed once for the 
entire propagation, the diagonal potential energy matrix has to be calculated at each time - step; (d) 
the contribution of different modes on the time-dependent amplitude of a grid - point of any mode 
can be found out independently leading to an obvious parallelization of the algorithm. Moreover, 
since the algorithm does not demand the entire string of amplitudes of the wavefunction at a time to 
calculate the time - dependence of an amplitude of a grid - point, the required physical memory is 
negligibly small; (e) The coupled equations for quantum and “classical” dynamics indicate the origin 
of the stiffness of the differential equations and predict the possibility to eliminate such problems. 

 In this article, we present the workability of TDDVR method [8,11-13] on a multi - 
dimensional multi - surface model Hamiltonian of ethylene radical cation (C2H4+) to simulate its 
photoabsorption spectra, where the formulation has the following assumptions on the form of the 
molecular wavefunction: (a) The wavefunction on each surface is being expanded as sum of vectors 
namely product - type multi - mode TDDVR basis functions with time - dependent coefficients. It is 
important to note that while wave packet moving from one surface to another, the formulation has 
enough scope to incorporate the details associated with the respective surface through TDDVR 
basis set as well as time - dependent coefficients; (b) Each TDDVR basis function is obtained by 
multiplying the corresponding DVR basis with a plane wave, which differs from one surface to 
another by its parameter; (c) The DVR basis set is constructed by using the eigenfunctions of 
harmonic oscillator as the primitive one; (d) The plane wave is defined by a classical trajectory and 
its momentum. When this multi - dimensional multi - surface wavefunction matrix of C2H4+ is 
substituted in the TDSE, we defined that the time - dependence of the expansion coefficients 
measure the quantum dynamics where the classical equation of motion for the central trajectory and 
its momentum appear naturally. With this respect, it is worthy to mention that the width parameters, 
as defined in the harmonic oscillator eigenfunctions are associated with the on - and off - diagonal 
elements of the Hamiltonian matrix in the quantum equation of motion, any non - linear “classical” 
propagation of the width6 not only increases inaccuracy in the quantum equation of motion but also 
brings the stiffness in the classical equation of motion. Thus, a fixed width approach either by 
introducing approximations [6,7] or by using time - independent width parameter10 is the obvious 
choice. On the contrary, the “classical” trajectory and its momentum appear with on - diagonal 
elements of the quantum equation of motion, may affect the convergence but not the final solution 
of the TDSE. In this version of TDDVR, the formulation is based on time - independent width 
parameter to bypass all the approximation made earlier and has the scope to derive the variationally 
optimized classical equation of motion from first principle leading to quantum correction in the 
classical trajectory or classical feedback to the quantum dynamics in a self consistent manner. The 
theory can be applied near the classical limit with a few grid - points on a particular mode or in the 
quantum limit with sufficient grid - points. It is precious to note that TDDVR with one grid - point 
corresponds to the classical limit known from Newtonian force. 

 The photo-physics of ethylene cation has brought considerable interest over the past years 
[14-18] since it provides an insight into the mechanism of molecular dynamics. Historically, the 
ethylene cation is an example of a important molecular system where the effect of conical 
intersection on the nuclear dynamics was initially studied [15,16]. This study brought to light that a 
conical intersection can lead to dramatic failure of the Born - Oppenheimer approximation and even 
change observables in a qualitative manner. In this work, we have investigated the nuclear dynamics 
considering the conical intersection of the C2H4

+ using TDDVR approach where all the three (3) 
vibrational modes are treated quantum mechanically. 
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 Ethylene molecule is a planar molecule of D2h symmetry, which consists 18 (3N, where N = 
6) normal vibrational modes. The electronic ground state configuration of the neutral planar 
ethylene molecule is: 1ag

21b2
1u2ag

22b2
1u1b2

2u3a2
g1b2

3g1b2
3u. The electronic ground and first excited 

state of the cation has B2u symmetry (X2B2u - state) while first excited state of the cation has B2g 
symmetry (A2B2g-state). Since the energy separation between the next ionic states is quite large, the 
higher states can be excluded from our treatment. We have computed the photo-absorption or 
photoelectron spectra of C2H4

+ with a realistic three (3) mode model Hamiltonian by using our 
TDDVR approach. 

 
Realistic model Hamiltonian of C2H4

+ 

The two lowest electronics states of the ethylene radical cation (X2B2u and A2B2g) are populated by 
photoionization of the neutral ground state. The well known Born-Oppenheimer approximation 
cannot be used for the description of these two electronic states as they interact via a vibronic 
coupling mechanism [3]. In the adiabatic representation, the couplings among the states appear 
through the kinetic energy operator, could diverge at and around the point of conical intersection 
and thus, the use of diabatic Hamiltonian is a necessity. The detail description of the system 
dynamics requires a suitable model Hamiltonian that incorporates the symmetry property of the 
molecule and should reproduce the X2B2u and A2B2g absorption spectra and the fast relaxation. For 
this reason we are using the well established most realistic model Hamiltonian introduced by 
Koeppel [15] where the intra and inter state linear coupling terms are involved: 

ሬሬ⃗ܪ = (ܶN+Vo) + [ܽ ܿ
ܿ ܾ]                  (1) 

where,  

 
 

 
 
 
 

 
 
 

The two terms TN and V0 denote the kinetic and potential energy term for the unperturbed 
harmonic oscillators of all the vibrationally active modes in the system, whereas the 2X2 unit matrix 
is represented as 1. The quantities E0

k (k = X , A) are the vertical ionization potentials of the 
corresponding electronic states. The linear intrastate (αi, i = 1,2 ) and inter state (λ) coupling 
constants of the above mentioned Hamiltonian (Eq. 1) are considered to obtain lower resolution PE 
spectra. 
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Theoretical background of TDDVR approach 
Though the detailed formulations of the different versions of TDDVR approach are presented 
successively elsewhere [6,8,10] in order to bring the completeness of this article, we briefly 
demonstrate the relevant equations of the latest one used for current perspective in the simplest but  

completely generalized way. The basic technical point of TDDVR dynamics is the movement of grid 
- points (trajectories) by using “classical” equations of motion with time - independent width 
parameter of the primitive basis set. The form of TDSE in the diabatic representation for the three-
mode two-surface model Hamiltonian of ethylene radical cation is given in Eq. (2) as: 

 

 

where 

 

            (3) 

 

 
 

Here, sk brings the same meaning of Qk. The l th (the value of l is 2) diabatic wavefunction for many 
degrees of freedom (p) is expanded in terms of products of TDDVR basis functions for the various 
k th modes can be expanded as:  

       (4) 

 

 

  

                     (5) 

where harmonic oscillator eigenfunctions are the primitive basis to construct DVR functions, 
   

 

 

with  

                            (6) 

 

For any mode k, roots (xik) of the Hermite polynomial (HN(xk)) are fixed points but the positions of 
the TDDVR grid – points (sk

c(t) s) move as a function of sik , 

                                                                                                   (7) 
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The Gauss-Hermite Basis is an ortho-normal basis and the GWP is orthogonal but not normalized 
[6,8,10]. When the model Hamiltonian Eq. (1) and the TDDVR representation of wavefunction 
[Eqs. (3)-(6)] are substituted into the TDSE, the classical path picture appears naturally along with 
the quantum equation of motion. The compact form of TDDVR matrix equation for quantum 
motion on the lth PES can be written as, where the classical path picture (Eq. 9 and 10) appears naturally 
along with the quantum counterpart (Eq. 8) [10-12], 

 

              (8) 

   

                              (9) 
     

                            (10) 

The important characteristics of the TDDVR equation of motion for quantum dynamics have been 
presented in our previous publications [6, 8] as: (a) The component matrices of the TDDVR 
Hamiltonian matrix [see Eq. (8)] are time - independent and need to be evaluated once for all; (b) 
Since the few matrices [10] are diagonal and associated with the “classical” variables, the non - linear 
dynamics of these “classical” quantities affects the convergence but not the final solution of the 
quantum equations of motion. (c) As the off – diagonal elements of few matrices [11] couple the 
grid - points and dominate the quantum dynamics, any non - linear “classical” propagation of their 
associated parameters, {Im Ak}, is not desirable, and hence, a time - independent {Im Ak} is the 
obvious choice; (d) The contribution of different modes on a time - dependent amplitude (Dl) can 
be evaluated independently, i.e., Yk and Zk matrices couple grid - points or basis functions of the k 
th mode only. This feature allows parallelization of the algorithm reduces computational cost 
remarkably and paves the possibility to pursue relatively large dimensional calculations. On the other 
hand, the classical path equations for the k th mode are presented in eq. (9) and (10). A rigorous 
expression of (QF

k)(t) is derived by using Dirac - Frenkel variational principle are presented in ref. 
10. 

 

Initialization and propagation 

Since the multi-mode nuclear dynamics of a molecule is expected to be very efficiently determined 
[11-13] by using TDDVR approach, our aim is to reproduce the X2B2u and A2B2g photo-absorption 
spectra of ethylene radical cation with a special interest on intramolecular relaxation and conical 
intersection expected to play an important role. On the other hand, as the intramolecular relaxation 
and the effects due to CI are post excitation phenomena, we assume a vertical excitation at the 
Franck-Condon point (Q=0) just before starting the dynamics so that the initial wavefunction on 
A2B2g state is same as that for neutral ground state. Thus the starting wavefunction for state A2B2g is 
a product of Gaussian functions centered on the equilibrium geometry (Q = 0) of the neutral 
ground state. The details of initialization of the wave packet and its propagation are presented in 
previous publications [6]. 
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Fig 1: The auto-correlation functions originated from 
the quantum dynamics of ethylene. The lower (red) and 
upper (blue) curve indicates the function when the initial 
wave-function is located on the A and X electronic state, 
respectively. 

Figure 2: (a) The experimental [14] PE 
spectra of C2H4; (b) The spectra calculated 
[15] by Koppel with FWHM = 0.02 eV; (c) 
The spectra calculated with TDDVR 
method with a damping parameter = 45 fs. 

Simulation of photoelectron spectra  
The nuclear wavefunction propagated by TDDVR quantum dynamical method is used to calculate the 
autocorrelation function (C(t)) and the Fourier transform of C(t) gives X2B2u and A2B2g absorption spectra 
of the ethylene molecule, 

                          (11) 

 

                    (12) 

The second form in eq. (12) is more accurate, 
computationally faster and convenient to implement 
than the first form. Additionally, the Eq. (12) is valid 
only when the initial wavefunction is real and the 
Hamiltonian is symmetric. Since the experimental 
spectral lines due to the resolution of the 
spectrometer appear broadened, one can 
incorporate this effect to the calculated spectra by 
convoluting with a suitable peaked curve [6] with 
appropriate broadening parameter. Though the 
experimental broadening alone of a spectrum 
requires a large value of broadening parameter, the 
calculated spectrum of C2H4+ for the three mode 
model has qualitatively well agreement with the 
experimental one[14] with broadening parameter = 
45 fs. 

 In this numerical calculation, the two lowest electronic 
states of ethylene cation are populated by the excitation, and an 
autocorrelation function C(t) needs to be obtained for each state. 
Operationally, we can perform two calculations starting with an 
initial wave packet Ψ(0) from one of the electronic states (X2B2u 
and A2B2g). The numerical propagation of Ψ(t) is then carried out 
to obtain the corresponding autocorrelation function and the 
resulting spectra are calculated according to Eq. (11). Assuming 
that the ionization of the neutral ground state occurs with the 
same probability from both (X2B2u and A2B2g), we shall add the 
two computed spectra with equal weights (1:1) to reach the final 
photo-electron spectra. In this quantum dynamical calculation, the 
optimum number of TDDVR grid-points used are Nγ1=16, N γ2 = 
16 and N γ4 = 8. 

Results and discussion 

The focus of our investigation is to calculate the auto-correlation 
function and thereby, to evaluate the photo-electron spectra of 
ethylene radical cation. We explore the agreement between the 
calculated spectrum and the experimental one14. In our first 
calculation, the linear coupling Hamiltonian (Eq. 1) is being 
taken into account by including three vibrational modes of the 
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Figure 3: The simulated PE spectra by 
TDDVR method for ground (X) state 
(upper panel)and excited (A) state (lower 
panel) with a damping parameter = 45 fs. 

two electronic states. Subsequently, the final photo-electron spectra calculation has been performed with 
those calculated auto-correlation functions. 

 The TDDVR wavefunction for the three-mode model is propagated up to 400 fs by using 16, 16 and 
8 movable grid - points for the tuning mode, γ1, γ2 and the coupling mode (γ4), respectively. The Eq. (12) 
implies that the propagation of wavefunction up to 100 fs 
corresponds to 200 fs in the profile of auto - correlation function. 
The absolute values of the auto - correlation functions calculated 
by using the above number of TDDVR basis functions starting 
with the initial wavefunction at X2B2u and A2B2g states are 
displayed in Fig. 1. Upper panel of Fig. 2 presents the 
experimentally measured photoabsobtion spectrum [14], where 
the middle panel of Fig. 2 shows the calculated absorption spectra 
by Koppel et al.[15] (by matrix diagonalization technique). The 
PE spectra have been computed using the Eq. (11) with linear on- 
and off-diagonal terms as provided in Table I. The TDDVR 
calculated spectra shows excellent agreement with the 
experimental one. The individual electronic state (X2B2u and 
A2B2g) spectra of both states are presented in the two panels of 
Fig. 3. The upper and lower panels of the Fig. 4 display the 
diabatic state population as a function of time again starting with 
the initial wavefunction at A2B2g and X2B2u state,  respectively. It 
is interesting to observe that the population profile in Fig. 4 
corresponds very well with the spectrum as shown in the lower 
panel of Fig. 2. The same calculation has been performed with 
smaller number of grid points, but the calculated spectra di_er 
little only at longer time. Since the loss of coherence throughout 
the whole propagation is small, and in principle, the TDDVR 
method with sufficient grid - points can reproduce the exact 
quantum mechanical results, we wish to perform TDDVR 
calculations with the smaller set of basis functions so that, the results are close enough to the exact quantum 
one15 and more number of grid-points could be included explicitly in the dynamical process. The upper and 
lower panels of the Fig. 4 demonstrate the change of system population density of the 3 - mode model as 
function of time, when the dynamics is performed starting the initial wavefunction at X2B2u and A2B2g state, 
respectively. The peaks/spikes in these figures clearly indicate the role of conical intersection in the dynamics. 

 
Computational and theoretical aspects of the TDDVR approach 
The TDDVR approach uses time - dependent  DVR basis functions (constructed with GWP multiplied by 
harmonic oscillator (primitive basis set), the calculations of potential energy matrix elements need to be 
performed only once for all the time. The movements of the grid - points in the TDDVR are dictated by so 
called “classical” mechanics and help to avoid the wastage of many grid - points to represent empty space. At 
this junction, we also wish to mention that the TDDVR approach has the clear scope to scale down the 
physical memory and CPU time substantially since it can be parallelized [11-13] the major areas of the 
algorithm. The contribution of different modes on a time - dependent amplitude (Dl) can be evaluated [Eq. 
(8)] independently, i.e., Yk and Zk matrices couple grid - points or basis functions of the k th mode only. This 
feature will allow parallelization of the algorithm, reduce computational cost remarkably and pave the 
possibility to pursue relatively large dimensional calculations. Moreover, we remind that the expansion of 
wavefunction in terms of TDDVR basis set can be such that one may also introduce the idea of mode 
combination either based on physical and/or symmetry consideration to reduce the computational cost. Of 
course, the correlation among the modes is a necessity to increase accuracy and its implementation in our 
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Figure 4: The population dynamics of the C2H4+ when initial wave 
function is located on (i) A (upper panel) and (ii) X (lower panel) 
state. 

TDDVR approach is definitely possible. At present, we are parallelizing the code and introducing the scope 
to incorporate the symmetry of the Hamiltonian. We have done all the calculations on a normal PC with 4 
GB RAM and 3.1 GHz clock speed. The amount of physical memory used and CPU time needed to perform 
the dynamics of three - mode model are 100 Mbytes and 10 minutes, respectively. The dynamics has been 
carried out by using 105 number of TDDVR grid - points on each surface. 

 
Summary  
A quantum dynamical study has been performed on ethylene radical cation by using the TDDVR approach 
considering a three - mode realistic model Hamiltonian to calculate its photoabsorption spectrum due to the 
excitation from neutral ground state to 
X2B2u and A2B2g, respectively. The 
method is enough flexible to handle 
any form of complexity of the 
Hamiltonian expressed in Cartesian 
coordinates. When sufficient TDDVR 
grid - points/basis functions are used 
for a particular or group of modes, the 
approach converges to a traditional 
quantum mechanical technique where 
the form of the potential is not a 
matter of concern. While implementing 
the TDDVR method on a multi - 
mode system to investigate its 
dynamics, the approach can predict the 
nature of the modes namely deep 
quantum and quasi - classical and has 
the scope of handling some of the 
modes at the quantum limit, others at 
near classical limit and rest with 
“classical” mechanics. Since the 
TDDVR uses time - dependent basis 
functions/grid - points and does not 
waste any of them to represent empty 
space, it achieves the convergence very 
fast compared to traditional DVR 
approaches and thereby, allows one to perform quantum limit calculations even for relatively large 
dimensional system. In the quantum regime, the dynamics of the centroid of the wave packet obeys the 
Ehrenfest theorem and facilitates the movement of grid - points, whereas in the classical limit, the centroid of 
the wave packet and the lone grid - point are the same point and its propagation is dictated by classical-
dynamics. In case of present Hamiltonian, the coupling and the tuning modes are being described with 
sufficient TDDVR basis to treat them in the quantum limit. The reasonable agreement between theoretically 
calculated and experimental/quantum mechanical spectrum shows the applicability of our approach for those 
large systems where quantum mechanical description is needed in a restricted region. 
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